DEFINITION

- A grammar is a 4-tuple G=(N, T, S, P)
 - N = set of **non-terminal** symbols
 - T = set of **terminal** symbols = set of tokens
 - $-N \cap T = \emptyset$
 - -S = start symbol
 - P = set of productions $\subset (N \cup T)^+ \times (N \cup T)^*$
- Notation: $(\alpha, \beta) \in P$ is written as $\alpha \rightarrow \beta$

CHOMSKY HIERARCHY

- Type 0 = **unrestricted** grammars describe **recursively enumerable** languages $- P \subset (N \cup T)^+ \times (N \cup T)^*$
 - Recognised by Turing Machines
- Type 1 = **context-sensitive** grammars describe context-sensitive languages $- P \subset [(N \cup T)^* N (N \cup T)^*] \times (N \cup T)^*$

 - Recognised by linear bounded automata
- Type 2 = **context-free** grammars describe context-free languages
 - $P \subset N \times (N \cup T)^*$
 - Recognised by Push-Down Automata (PDA)
- Type 3 = regular grammars describe regular languages
 - $P \subset N \times T(N \cup \{\varepsilon\})^*$
 - Recognised by Finite State Automata (FSA)
 - Every regular expression can be described by a regular grammar and vice-versa.